Note
Go to the end to download the full example code.
Run an OpenFOAM simulation
from pathlib import Path
import time
from remote_run.run import (
ExecutionContext,
SlurmSchedulingEngine,
GuixRunner,
GitProject,
remote,
is_finished,
SshExecution,
)
from pyopenfoam.tutorials import generate_pitz_daily_case
we use pyopenfoam to call OpenFOAM from python this means adding this channel to the guix channels. This can also be read from a file directly.
channels = """(list
(channel
(name 'guix)
(url "https://git.savannah.gnu.org/git/guix.git")
(branch "master")
(commit
"ee8be372972bc1e84b5870df738c6e0bbdd975ff")
(introduction
(make-channel-introduction
"9edb3f66fd807b096b48283debdcddccfea34bad"
(openpgp-fingerprint
"BBB0 2DDF 2CEA F6A8 0D1D E643 A2A0 6DF2 A33A 54FA"))))
(channel
(name 'python-pyopenfoam)
(url "https://gitlab.ost.ch/sce-floss/pyopenfoam.git")
(branch "main")
(commit
"ab8b4130bd8e3c199e72b47c6ca1809011be3b5e"))
(channel
(name 'guix-ost)
(url "https://gitlab.ost.ch/scl/guix-ost.git")
(branch "main")
(commit
"2a64fa887f4a2069ea9426e423f55838bc8987e9")))"""
define execution variables
num_cpus = 10
Define an execution context with a scheduling engine. For slurm you can pass slurm parameters directly here.
execution_context = ExecutionContext(
execution=SshExecution(
machine="shpc0003.ost.ch",
working_directory=Path("/cluster/raid/home/reza.housseini"),
),
num_cpus=num_cpus,
project=GitProject(),
runner=GuixRunner(
dependencies=[
"python-pyvista",
"python-pint",
"python-pyopenfoam",
"openfoam-org",
"openmpi",
],
channels=channels,
),
scheduling_engine=SlurmSchedulingEngine(
job_name="openfoam_sim",
mail_type="ALL",
mail_user="reza.housseini@ost.ch",
),
)
define simulation variables
duration = 0.1 # seconds
create an OpenFOAM case locally
pitz_daily_case = generate_pitz_daily_case(duration=duration, num_cpus=num_cpus)
case_path = Path("pitz_daily_case")
pitz_daily_case.write(folder=case_path)
decorate your functions you want to run in the specified execution context, in this case we want to execute our OpenFOAM case in parallel and return the field “alpha.liquid”
@remote(execution_context)
def sim_job(run_path=None):
# call import statements here for modules needed remotely
from pyopenfoam.cli.scripts import of_run
import pyvista as pv
remote_case_path = run_path / case_path.name
of_run(remote_case_path)
# return simulation data
foam_file = run_path / (case_path.name + ".foam")
foam_file.touch()
reader = pv.POpenFOAMReader(foam_file)
return reader.read()
this call will run on the remote machine specified in
execution_context but due to the asynchronous nature of scheduling
engines this will not return the result, instead you get the job id
and a function to retrieve the result later.
Inject the identifier keyword argument, it will be replaced with the
Identifier object holding the paths.
job_id, result_func = sim_job(identifier=None)
now we wait for the remote execution to finish before retrieving the result normally this step is decoupled when using a scheduler.
time.sleep(10)
we should check if the job id has finished before retrieving the result
if is_finished(execution_context, job_id):
result = result_func()